教师主页

教师主页

current location: 首页 > 师资队伍 > 石万元 >

石万元

职称:教授

联系方式:shiwy@126.com

主要从事:​长期从事传热学、非平衡热力学的教学和科研工作,担任本科生《传热学》和研究生《非平衡热力学》的教学工作。主持国家自然科学基金项目3项和其它省部级项目5项,参加了科技部“973”计划项
  • 个人简介
  • 教育经历
  • 研究方向
  • 本科生及研究生培养
  • 科研项目
  • 代表性论文

博士、教授、博士生导师。2006年获日本九州大学工学博士学位,先后在北海道大学、东北大学(日本)从事博士后研究工作。长期从事传热学、非平衡热力学的教学和科研工作,担任本科生《传热学》和研究生《非平衡热力学》的教学工作。主持国家自然科学基金项目3项和其它省部级项目5项,参加了科技部“973”计划项目、国家自然科学基金重点项目等项目的研究。发表SCI/EI论文40多篇,申请和授权发明专利3项,参加编写《传热分析与计算》教材1部。担任国家自然科学基金项目函评专家。


1. 气液相变及其强化

2. 热对流及不稳定现象

3. 电磁悬浮及液滴稳定性

4. 非平衡热力学稳定性理论及应用



1.      国家自然科学基金项目:平面上液滴蒸发诱发耦合Marangoni对流失稳机制及耗散结构特征

2.      国家自然科学基金项目:叠加静磁场作用下电磁悬浮熔融液滴对流不稳定特征及其失稳机理

3.      国家自然科学基金项目:环形液层旋转-热毛细对流失稳机理及耗散结构特征

4.      教育部留学回国人员启动基金项目: 旋转系统热毛细对流、失稳机理及热流体波的特征的研究

5.      重庆市自然科学基金项目:静磁场对电磁悬浮熔融液滴对流和振荡过程影响的研究

6.      重庆市自然科学基金项目:旋转液池内热毛细对流的稳定性


[1]    T-S Wang, W-Y Shi. Transition of Marangoni convection instability patterns during evaporation of sessile droplet at constant contact line mode. Int. J. Heat Mass Transfer, 2020, 148: 119138.

[2]    N. Imaishi, M.K. Ermakov, W.Y. Shi. Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool. Int. J. Heat Mass Transfer, 2020, 148: 119103.

[3]    T-S Wang, W-Y Shi. Marangoni instability induced by evaporation in well-defined non-spherical sessile droplet. Int. J. Heat Mass Transfer, 2019, 141: 168-179.

[4]    L Feng, W-Y Shi, E Shoji, M Kubo, T Tsukada. Effects of vertical, horizontal and rotational magnetic fields on convection in an electromagnetically levitated droplet. Int. J. Heat Mass Transfer, 2019, 130: 787-796.

[5]    J-L Zhu, W-Y Shi. Longitudinal roll patterns of Marangoni instability in an easily volatile sessile droplet evaporating at constant contact angle mode. Int. J. Heat Mass Transfer, 2019, 134: 1283-1291.

[6]    J-L Zhu, W-Y Shi, L Feng. Bénard-Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate. Int. J. Heat Mass Transfer, 2019, 134: 784-795.

[7]    T-S Wang, W-Y Shi. Influence of substrate temperature on Marangoni convection instabilities in a sessile droplet evaporating at constant contact line mode. Int. J. Heat Mass Transfer, 2019, 131: 1270-1278.  

[8]    L. Feng, W-Y Shi. Numerical investigation on frequency shift of an electromagnetically levitated molten droplet. Int. J. Heat Mass Transfer, 2018, 122: 69-77.

[9]    H-M Li, W-Y Shi, M K Ermakov. Thermocapillary flow instabilities of medium Prandtl number liquid in rotating annular pools. Int. J. Thermal Sciences, 2017, 120: 233-243.

[10]H-M Li, W-Y Shi. Thermocapillary convection in a differentially heated two-layer annular system with and without rotation. Int. J. Heat Mass Transfer, 2017, 105: 684-689.

[11]W-Y Shi, K-Y Tang, J-N Ma, H-M Li, L Feng. Marangoni convection instability in a sessile droplet with low volatility on heated substrate. Int. J. Thermal Sciences, 2017, 117: 274-286.

[12]W-Y Shi, S-M Rong, L Feng. Marangoni convection instabilities induced by evaporation of liquid layer in an open rectangular pool. Microgravity Science and Technology, 2017, 29:91-96.

[13]L Feng, W-Y Shi. The influence of Marangoni effect on flow and deformation of an electromagnetically levitated molten droplet under static magnetic fields. Int. J. Heat Mass Transfer, 2016, 101: 629-636.

[14]X-H Tian, W-Y Shi, T Tang, L Feng. Influence of vertical static magnetic field on behavior of rising single bubble in a conductive fluid. ISIJ International, 2016, 56: 195-204.

[15]L Feng, W-Y Shi. Influence of coil angle arrangement on dynamic deformation and stability of molten droplet in electromagnetic levitation system. ISIJ International, 2016, 56: 50-56.

[16]L Feng, W-Y Shi. The influence of eddy effect of coils on flow and temperature fields of molten droplet in electromagnetic levitation device. Metallurgical and Materials Transactions B, 2015, 46: 1895-1901.

[17]D-M Mo, Y-R Li, W-Y Shi. Linear-stability analysis of thermocapillary flow in an annular two-layer system with upper rigid wall, Microgravity Science and Technology, 2011, 23: S43-S48

[18]W-Y Shi, Y-R Li, M K Ermakov, N Imaishi. Stability of thermocapillary convection in rotating shallow annular pool of silicon melt. Microgravity Science and Technology, 2010, 22: 315-320.

[19]W-Y Shi, G-Y Li, X Liu, Y-R Li, L Peng, N Imaishi. Thermocapillary convection and buoyant-thermocapillary convection in the annular pools of silicon melt and silicone oil. J. Superconductivity and Novel Magnetism, 2010, 23: 1169-1172.

[20]W-Y Shi, X Liu, G- Y Li, Y-R Li, L Peng, M K Ermakov, N Imaishi. Thermocapillary convection instability in shallow annular pools by linear stability analysis. J. Superconductivity and Novel Magnetism, 2010, 23: 1185-1188.

[21]W-Y Shi, M K Ermakov, Y-R Li, L Peng, N Imaishi. Influence of buoyancy force on thermocapillary convection instability in the differentially heated annular pools of silicon melt. Microgravity Science and Technology, 2009, 21: S289–S297.

[22]W-Y Shi, E Kurihara, N Oshima. Effect of capillary pressure on liquid water removal in a cathode gas diffusion layer of polymer electrolyte fuel cell. J. Power Sources, 2008, 182:112-118.

[23]W-Y Shi, N Imaishi. Thermocapillary convection in a shallow annular pool heated from inner wall. Microgravity Science and Technology, 2007, XIX: 104-105.

[24]W-Y Shi, N Imaishi. Hydrothermal waves in rotating annular pools of silicon melt. Microgravity Science and Technology, 2007, XIX: 159-160.

[25]W-Y Shi, N Imaishi. Experimental investigation on hydrothermal wave in a shallow annular pool. Microgravity Science and Technology, 2007, XIX: 161-162.

[26]L Peng, Y-R Li, W-Y Shi, N Imaishi. Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool. Int. J. Heat Mass Transfer, 2007, 50: 872-880.

[27]W-Y Shi, M K Ermarkov, N Imaishi. Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. J. Crystal Growth, 2006, 294: 474-485.

[28]W-Y Shi, N Imaishi. Hydrothermal waves in differentially heated shallow annular pools of silicone oil, J. Crystal Growth, 2006, 290: 280-291.

[29]祝及龙,石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象. 化工学报, 2018, 69: 53-57.

[30]贾沂伟,石万元,王天石. 加热基板上硅油液滴蒸发诱发的Marangoni对流失稳现象实验研究. 工程热物理学报, 2017, 38: 2001-2004.

[31]陈贤琴,石万元,李翰明. 环形池内反常热毛细对流及稳定性线性稳定性分析. 工程热物理学报, 2017,38: 1274-1281.

[32]唐甜,石万元. 固定接触角蒸发液滴内Marangoni对流数值模拟. 工程热物理学报, 2017,38: 792-799.

[33]宋其晖,石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报,2014,63:248504.

[34]李翰明, 石万元, 周涛, 王瑜. 环形池内双层流体热毛细对流不稳定现象实验研究, 工程热物理学报, 2014, 35: 762-765.

[35]石万元, 王瑜. 系统旋转对浅环形池内硅油热毛细对流影响的实验研究. 工程热物理学报, 2013, 34: 702-705.

[36]石万元, 李建英, 王瑜, 李友荣. 数值分析环形池硅熔体旋转-热毛细对流及其稳定性. 工程热物理学报, 2012, 33: 856-860.

[37]石万元, 张凤超, 田小红, 等. 相场法模拟悬浮熔融硅液滴内部对流及自由界面变形现象. 西南交通大学学报, 2012, 47: 692-697.

[38]石万元, 李友荣, 彭岚. Pr数对环形浅液池热毛细对流的影响. 工程热物理学报,  2011, 32: 250-254.

[39]石万元, 李友荣, 彭岚, 等. 环形浅液池内热流体波的本质特征. 计算力学学报, 2009, 26: 59-65.

[40]石万元, 李友荣, 今石宣之. 三维数值模拟内环加热的环形硅油液层内的热毛细对流. 力学学报, 2008, 4: 433-440.

[41]石万元, 李友荣, M. K. Ermakov, 今石宣之. 环形液层内热毛细对流的线性稳定性分析. 工程热物理学报, 2008, 29: 1218-1220.

[42]石万元, 李友荣, 曾丹苓, 今石宣之. 环形浅液层内热流体波的可视化实验研究. 工程热物理学报, 2007, 28: 101-104.