教师主页

教师主页

当前位置: 首页 > 师资队伍 > 石万元 >

石万元

职称:教授

邮箱:shiwy@126.com

主要从事:​长期从事传热学、非平衡热力学的教学和科研工作,担任本科生《传热学》和研究生《非平衡热力学》的教学工作
  • 个人简介
  • 教育经历
  • 研究方向
  • 本科生及研究生培养
  • 科研项目
  • 代表性论文

石万元 博士、教授、博士生导师。2006年获日本九州大学工学博士学位,先后在北海道大学、东北大学(日本)从事博士后研究工作。长期从事传热学、非平衡热力学的教学和科研工作,担任本科生《传热学》和研究生《非平衡热力学》的教学工作。主持国家自然科学基金项目3项和其它省部级项目5项,参加了科技部“973”计划项目、国家自然科学基金重点项目等项目的研究。以一作或通讯作者发表期刊论文45篇,其中SCI论文30篇,EI收录15篇,授权发明专利2项,参加编写《传热分析与计算》教材1部。担任国家自然科学基金项目函评专家。

1. 气液相变及强化传热技术

2. 流体界面传输理论及工程应用

3. 非平衡热力学理论及应用


主持科研项目:

1.     国家自然科学基金项目:平面上液滴蒸发诱发耦合Marangoni对流失稳机制及耗散结构特征

2.     国家自然科学基金项目:叠加静磁场作用下电磁悬浮熔融液滴对流不稳定特征及其失稳机理

3.     国家自然科学基金项目:环形液层旋转-热毛细对流失稳机理及耗散结构特征

4.     教育部留学回国人员启动基金项目: 旋转系统热毛细对流、失稳机理及热流体波的特征的研究

5.     重庆市自然科学基金项目:静磁场对电磁悬浮熔融液滴对流和振荡过程影响的研究

6.     重庆市自然科学基金项目:旋转液池内热毛细对流的稳定性

 


(一作或通讯作者):

[1]   J-L Zhu, W-Y Shi. Hydrothermal waves in sessile droplets evaporating at a constant contact angle mode. Int. J. Heat Mass Transfer, 2021, 172:121131.

[2]   T-S Wang, W-Y Shi. Marangoni convection instability in an evaporating droplet deposited on volatile liquid layer. Int. J. Heat Mass Transfer, 2021, 171: 121055.

[3]   B. Xu, W-Y Shi, W. Sun, L-M Pan, Y-Q Dong. Investigation on synergistic effect of CuCl2 and FeCl3 impregnated into fly ash on mercury removal by experiment and density functional theory. Applied Surface Science, 2021, 565: 150484.

[4]   J-L Zhu, W-Y Shi. Spontaneous thermocapillary motion of condensation droplets. Applied Physics Letters, 2020, 116: 243703. (自然指数期刊)

[5]   L Feng, W-Y Shi. Effect of droplet deformation on determination of thermal conductivity in modulated laser calorimetry. Int. J. Heat Mass Transfer, 2020, 163: 120501.

[6]   T-S Wang, W-Y Shi. Transition of Marangoni convection instability patterns during evaporation of sessile droplet at constant contact line mode. Int. J. Heat Mass Transfer, 2020, 148: 119138.

[7]   T-S Wang, W-Y Shi. Marangoni instability induced by evaporation in well-defined non-spherical sessile droplet. Int. J. Heat Mass Transfer, 2019, 141: 168-179.

[8]   L Feng, W-Y Shi, E Shoji, M Kubo, T Tsukada. Effects of vertical, horizontal and rotational magnetic fields on convection in an electromagnetically levitated droplet. Int. J. Heat Mass Transfer, 2019, 130: 787-796.

[9]   J-L Zhu, W-Y Shi. Longitudinal roll patterns of Marangoni instability in an easily volatile sessile droplet evaporating at constant contact angle mode. Int. J. Heat Mass Transfer, 2019, 134: 1283-1291.

[10]J-L Zhu, W-Y Shi, L Feng. Bénard-Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate. Int. J. Heat Mass Transfer, 2019, 134: 784-795.

[11]T-S Wang, W-Y Shi. Influence of substrate temperature on Marangoni convection instabilities in a sessile droplet evaporating at constant contact line mode. Int. J. Heat Mass Transfer, 2019, 131: 1270-1278.  

[12]L. Feng, W-Y Shi. Numerical investigation on frequency shift of an electromagnetically levitated molten droplet. Int. J. Heat Mass Transfer, 2018, 122: 69-77.

[13]H-M Li, W-Y Shi, M K Ermakov. Thermocapillary flow instabilities of medium Prandtl number liquid in rotating annular pools. Int. J. Thermal Sciences, 2017, 120: 233-243.

[14]H-M Li, W-Y Shi. Thermocapillary convection in a differentially heated two-layer annular system with and without rotation. Int. J. Heat Mass Transfer, 2017, 105: 684-689.

[15]W-Y Shi, K-Y Tang, J-N Ma, H-M Li, L Feng. Marangoni convection instability in a sessile droplet with low volatility on heated substrate. Int. J. Thermal Sciences, 2017, 117: 274-286.

[16]W-Y Shi, S-M Rong, L Feng. Marangoni convection instabilities induced by evaporation of liquid layer in an open rectangular pool. Microgravity Science and Technology, 2017, 29:91-96.

[17]L Feng, W-Y Shi. The influence of Marangoni effect on flow and deformation of an electromagnetically levitated molten droplet under static magnetic fields. Int. J. Heat Mass Transfer, 2016, 101: 629-636.

[18]X-H Tian, W-Y Shi, T Tang, L Feng. Influence of vertical static magnetic field on behavior of rising single bubble in a conductive fluid. ISIJ International, 2016, 56: 195-204.

[19]L Feng, W-Y Shi. Influence of coil angle arrangement on dynamic deformation and stability of molten droplet in electromagnetic levitation system. ISIJ International, 2016, 56: 50-56.

[20]L Feng, W-Y Shi. The influence of eddy effect of coils on flow and temperature fields of molten droplet in electromagnetic levitation device. Metallurgical and Materials Transactions B, 2015, 46: 1895-1901.

[21]W-Y Shi, Y-R Li, M K Ermakov, N Imaishi. Stability of thermocapillary convection in rotating shallow annular pool of silicon melt. Microgravity Science and Technology, 2010, 22: 315-320.

[22]W-Y Shi, G-Y Li, X Liu, Y-R Li, L Peng, N Imaishi. Thermocapillary convection and buoyant-thermocapillary convection in the annular pools of silicon melt and silicone oil. J. Superconductivity and Novel Magnetism, 2010, 23: 1169-1172.

[23]W-Y Shi, X Liu, G- Y Li, Y-R Li, L Peng, M K Ermakov, N Imaishi. Thermocapillary convection instability in shallow annular pools by linear stability analysis. J. Superconductivity and Novel Magnetism, 2010, 23: 1185-1188.

[24]W-Y Shi, M K Ermakov, Y-R Li, L Peng, N Imaishi. Influence of buoyancy force on thermocapillary convection instability in the differentially heated annular pools of silicon melt. Microgravity Science and Technology, 2009, 21: S289–S297.

[25]W-Y Shi, E Kurihara, N Oshima. Effect of capillary pressure on liquid water removal in a cathode gas diffusion layer of polymer electrolyte fuel cell. J. Power Sources, 2008, 182:112-118.

[26]W-Y Shi, N Imaishi. Thermocapillary convection in a shallow annular pool heated from inner wall. Microgravity Science and Technology, 2007, XIX: 104-105.

[27]W-Y Shi, N Imaishi. Hydrothermal waves in rotating annular pools of silicon melt. Microgravity Science and Technology, 2007, XIX: 159-160.

[28]W-Y Shi, N Imaishi. Experimental investigation on hydrothermal wave in a shallow annular pool. Microgravity Science and Technology, 2007, XIX: 161-162.

[29]W-Y Shi, M K Ermarkov, N Imaishi. Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. J. Crystal Growth, 2006, 294: 474-485.

[30]W-Y Shi, N Imaishi. Hydrothermal waves in differentially heated shallow annular pools of silicone oil, J. Crystal Growth, 2006, 290: 280-291.

[31]祝及龙,石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象. 化工学报, 2018, 69(S1): 53-57. (封面论文)