主要从事热流固耦合动力学、流体诱发振动、航空发动机高温燃气取样、新能源及可再生能源高效利用等方面的研究与教学工作。重庆大学/美国密歇根大学安娜堡分校(University of Michigan-Ann Arbor)联合培养博士,2013年6月获工学博士学位。作为项目负责人主持国家自然科学基金2项、重庆市自然科学基金项目3项、重庆市研究生教育教学改革研究项目2项、重庆市博士后科研基金项目1项和重庆大学中央高校科研项目2项等,参与教育部博士点重点基金、重庆市科委重点项目等。在本领域国内外知名期刊及国际学术会议发表学术论文70余篇,申请发明专利12项,其中授权8项。2017年被评为重庆大学2015-2016年度优秀博士后,获四川省科技进步奖三等奖一项。
2021.9至今,重庆大学,能源与动力工程学院,教授
2015-2021,重庆大学,能源与动力工程学院,副教授
2013-2015,重庆大学,博士后/讲师
2008-2013,重庆大学/美国University of Michigan-Ann Arbor,联合培养博士
2004-2008,重庆大学,动力工程学院,本科
多场耦合动力学;
流体诱发振动及噪声;
微风/河流/海洋能源收集系统;
钝体绕流及热量传递;
高温燃气取样技术;
可再生能源及其高效利用
本科生及研究生培养:
主讲本科生《热力发电厂》、《能源与可持续发展》、研究生《多物理场工程模拟技术》等课程。招收热能工程、新能源、动力工程及工程热物理专业方向的博士、硕士研究生。
国家自然科学基金面上项目,负责人
国家自然科学基金青年基金,负责人
重庆市自然科学基金面上项目,负责人
重庆市基础与前沿研究专项,负责人
中央高校科研业务费(创新人才专项),负责人
中央高校基本科研业务费,负责人
重庆市博士后科研基金,负责人
代表性论文:
[1] L Ding*, Y Duan, X Mao, J Ran. Comprehensive analysis of flow-induced vibration and rotation characteristics of near-wall hydrofoil. Ocean Engineering, 2025, 317, 120085.
[2] L Ding*, Y Fu, X Li, J Ran. Review of vibration induced by gas-liquid two-phase flow inside pipes. Ocean Engineering, 2025, 316, 120006.
[3] L Ding*, Y Fu, D Liu, J Ran. Exploring the heat transfer performance and vortex-induced vibration characteristics of cylinders near a heated surface. Physics of Fluids, 2024, 36(12), 123622.
[4] L Ding*, J Xiong, Y Han, Z Zhu, J Ran. Improvement of mixing performance in laminar micromixers utilizing vortex-induced vibration of two circular cylinders. International Communications in Heat and Mass Transfer, 2024, 159,108285.
[5] T Song, L Ding*, H He, J Ran. Investigation of flow-induced vibration and energy extraction of a bluff body with different immersed depths and cross section shapes. Physics of Fluids, 2024, 36(9), 095112.
[6] Y Han, L Ding*, T Song, D Liu, J Ran. Performance evaluation of laminar micromixer based on two-degree-of-freedom flow-induced vibration. International Journal of Heat and Mass Transfer, 2023, 216, 124569.
[7] Q Zou, L Ding*, T Song, J Ran, L Zhang. Experimental and numerical study on 2-DOF wind-induced vibration and energy harvesting of triangular prism. Ocean Engineering, 2023, 281, 114928.
[8] T Song, L Ding*, L Yang, J Ran, L Zhang. Comparison of machine learning models for performance evaluation of wind-induced vibration piezoelectric energy harvester with fin-shaped attachments. Ocean Engineering, 2023, 280, 114630.
[9] L Ding*, H He, T Song. Vortex-induced vibration and heat dissipation of multiple cylinders under opposed thermal buoyancy. Ocean Engineering, 2023, 270, 113669.
[10] T Song, L Ding*, H He, L Zhang, J Ran. Thermal fluid-structural interaction of three cylinders undergoing flow-induced vibration with cross thermal buoyancy. Physics of Fluids, 2022, 34(12), 123601.
[11] L Ding*, Y Sun, Z Yang. Heat transfer and vibration response of a stationary cylinder and an elastic cylinder under mutual interference. International Communications in Heat and Mass Transfer, 2022, 139, 106493.
[12] Q Zou, L Ding*, H He, T Song. Investigation on heat transfer and flow-induced vibration of three cylinders in equilateral triangle arrangement. International Communications in Heat and Mass Transfer, 2022, 136, 106177.
[13] L Ding*, Y Han, Z Yang, L Zhang, H He. Influence of upstream cylinder on flow-induced vibration and heat transfer of downstream cylinder. International Journal of Thermal Sciences, 2022, 107519.
[14] Q Zou, L Ding*, R Zou, H Kong, H Wang, L Zhang. Two-degree-of-freedom flow-induced vibration of two circular cylinders with constraint for different arrangements. Ocean Engineering, 2021, 225:108806.
[15] Q Zou, L Ding*, T Song, L Yang, L Zhang. Influence of coverage of fin-shaped rods on flow-induced vibration and power extraction of cylinder-based wind energy harvester. Smart Materials and Structures, 2021, 30(6): 065004.
[16] Z Yang, L Ding*, L Zhang, L Yang, H He. Two degrees of freedom flow-induced vibration and heat transfer of an isothermal cylinder. International Journal of Heat and Mass Transfer, 2020, 154: 119766.
[17] J Wang, L Geng, L Ding*, H Zhu, D Yurchenko. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902.
[18] L Ding*, L Yang, Z Yang, L Zhang, C Wu, B Yan. Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods. Journal of Wind Engineering & Industrial Aerodynamic, 2020, 196: 104051.
[19] H Wang, L Ding*, L Zhang, Q Zou, R N Sharma. Control of two-degree-of-freedom vortex-induced vibrations of a circular cylinder using synthetic Jets: Effect of synthetic jet orientation angle and phase difference. Ocean Engineering, 2020, 217: 107906.
[20] Q Zou, L Ding*, H Wang, J Wang, L Zhang. Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Engineering, 2019, 191: 106505.
[21] L Ding*, L Zhang, C Wu, E S Kim, M M Bernitsas. Numerical Study on the Effect of Tandem Spacing on Flow-Induced Motions of Two Cylinders with Passive Turbulence Control. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139: 021801.
[22] L Ding*, L Zhang, E S Kim, M M Bernitsas., C C Chang. Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control. Renewable Energy, 2016, 85: 1246-1259.
[23] L Ding*, L Zhang, E S Kim, M M Bernitsas. URANS vs. Experiments of Flow-Induced Motions of Multiple Circular Cylinders with Passive Turbulence Control. Journal of Fluids and Structures, 2015, 54: 612-628
[24] L Ding*, L Zhang, C Wu, X Mao, D Jiang. Flow Induced Motion and Energy Harvesting of Bluff Bodies with Different Cross Sections. Energy Conversion and Management, 2015, 91: 416-426
[25] L Ding*, M M Bernitsas, E S Kim. 2-d URANS vs. experiments of flow-induced motions of two circular cylinders in tandem with passive turbulence control for 30,000