重庆大学能源与动力工程学院欢迎您!

您当前的位置 : 首页 >> 师资队伍 >> 热能与动力工程系 >> 正文

师资队伍

热能与动力工程系

刘江岩

2018-10-29 16:21  点击:[]

姓名

刘江岩

性别

所在部门

热能与动力工程系

职称

讲师

职务

 

联系电话

 

邮箱

liujiangyan@cqu.edu.cn

 

*个人简介:

刘江岩,男,1992年生,湖南湘潭人。重庆大学能源与动力工程学院,讲师。

2018年获华中科技大学制冷与低温工程专业工学博士学位。主要从事智慧能源系统相关研究,涵盖能源系统故障诊断、大数据分析、智能控制与节能优化等,目前已发表SCI论文二十余篇,以第一作者身份发表SCI\EI论文11篇,国际会议论文2篇,出版专著1部,长期担任EnergyApplied Energy等国际期刊审稿人。

 

*研究方向:

1)制冷系统故障检测与诊断技术

2)基于大数据的新能源汽车动力电池安全监控及智能诊断

3)建筑能源系统数据挖掘及控制优化

4)多能互补分布式能源系统仿真及设计优化

   欢迎对数据挖掘与能源系统交叉研究感兴趣的本科生与我联系交流。

 

*在研科研项目:

1)重庆市自然科学基金面上项目“兼顾热、电网损失的西部山地分布式能源系统空间结构与邻里尺度耦合优化研究”,2019.07~2022.06

2)横向课题“冷水机组制冷剂泄漏在线检测技术”,2018~2020

3)横向课题“基于大数据分析及分区多场耦合的空调节能控制技术研究”,2020~2022

 

*发表论文:

[1] Zhenxiang Dong, Jiangyan Liu*, and Bin Liu et al. 2021. Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption patterns classification[J]. Energy and Buildings. 2021: 110929.

[2] Jiangyan Liu*, Qing Zhang, and Zhenxiang Dong et al. 2021. Quantitative evaluation of the building energy performance based on short-term energy predictions[J]. Energy. 2021;223: 120065.

[3] Jiangyan Liu*, Daliang Shi, Guannan Li, et al. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers[J]. Energy and Buildings. 2020;216:109957.

[4] Jiangyan Liu*, Kuining Li, Bin Liu, et al. Improvement of the energy evaluation methodology of individual office building with dynamic energy grading system[J]. Sustainable Cities and Society. 2020;58:102133.

[5] Jiangyan Liu, Guannan Li, Bin Liu, et al. Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system[J]. Energy. 2019;174:873-885.

[6] Jiangyan Liu, Jiahui Liu, Huanxin Chen, et al. Energy diagnosis of variable refrigerant flow (VRF) systems: Data mining technique and statistical quality control approach[J]. Energy and Buildings, 2018, 175: 148-162

[7] Jiangyan Liu, Huanxin Chen, Jiahui Liu, et al. An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information[J]. Applied Energy, 2017, 206: 193-205

[8] Jiangyan Liu, Jiangyu Wang, Guannan Liet al. Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques[J]. Applied Energy, 2017, 208: 522-539

[9] Jiangyan Liu, Guannan Li, Huanxin Chen, et al. A robust online refrigerant charge fault diagnosis strategy for VRF systems based on virtual sensor technique and PCA-EWMA method[J]. Applied Thermal Engineering, 2017, 119: 233-243

[10] Jiangyan Liu, Yunpeng Hu, Huanxin Chen, et al. A refrigerant charge fault detection method for variable refrigerant flow (VRF) air-conditioning systems[J]. Applied Thermal Engineering, 2016, 107: 284-293

[11] Ronggeng Huang, Jiangyan Liu, Huanxin Chen, et al. An effective fault diagnosis method for centrifugal chillers using associative classification[J]. Applied Thermal Engineering, 2018, 136: 633-642

[12] Guannan Li, Yunpeng Hu, and Jiangyan Liu et al. 2021. Review on Fault Detection and Diagnosis Feature Engineering in Building Heating, Ventilation, Air Conditioning and Refrigeration Systems[J]. IEEE Access. 2021;9: 2153-2187.

[13] Yi Xie, Zhaoming Liu, Kuining Li, and Jiangyan Liu et al. An improved intelligent model predictive controller for cooling system of electric vehicle[J]. Applied Thermal Engineering. 2021;182.

[14] Jiangyu Wang, Guannan Li, Huanxin Chen, Jiangyan Liu, et al. Energy consumption prediction for water-source heat pump system using pattern recognition-based algorithms[J]. Applied Thermal Engineering, 2018, 136: 755-766

[15] Jiangyu Wang, Guannan Li, Huanxin Chen, Jiangyan Liu, et al. Liquid floodback detection for scroll compressor in a VRF system under heating mode[J]. Applied Thermal Engineering, 2017, 114: 921-930

[16] Kaizheng Sun, Guannan Li, Huanxin Chen, Jiangyan Liu, et al. A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount[J]. Applied Thermal Engineering, 2016, 108: 989-998

[17] Yunpeng Hu, Guannan Li, Huanxin Chen, Jiangyan Liu, et al. Sensitivity analysis for PCA-based chiller sensor fault detection[J]. International Journal of Refrigeration, 2016, 63: 133-143

[18] 石大亮,刘江岩*,李夔宁等. 基于关联规则分类的冷水机组故障诊断研究[J]. 制冷学报202101

[19] 刘江岩,陈焕新,王江宇等. 基于数据挖掘算法的地铁站内温度时序预测方法[J]. 工程热物理学报20183806: 1316-1321

[20] 王江宇,陈焕新,刘江岩. 基于PCA-DT的多联机制冷剂充注量故障诊断[J]. 华中科技大学学报(自然科学版)201607: 1-4

[21] 刘佳慧,刘江岩,李绍斌等. 基于决策树算法的多联机气液分离器插反故障诊断[J]. 制冷学报201705: 1-6

 

出版专著:

[1] 陈焕新,刘江岩 . 制冷空调遇上大数据——行业大变革[M]. 北京: 中国建筑工业出版社,2017

 

学术会议交流:

[1] 刘江岩,张青,李鑫等. 基于阈值自适应的冷水机组制冷剂泄漏故障迁移检测方法[C]. 中国工程热物理学会工程热力学与能源利用学术会议,2020,上海

[2] Liu Jiangyan, Chen Huanxin, Wang Jiangyu, et al. Fault diagnosis of refrigerant charge based on PCA and decision tree for variable refrigerant flow systems [C]. 2016, West Lafayette, IN, USA.

[3] 刘江岩,陈焕新,王江宇等. 基于数据挖掘算法的地铁站内温度时序预测方法[C]. 中国工程热物理学会工程热力学与能源利用学术会议,2016,广州

[4] Liu Jiangyan, Chen Huanxin, Hu Yunpeng, et al. The Energy and Performance Analysis of Central Air-conditioning System under the Conditions of Sensor Faults [C]. 2015, Xi'an, China.

上一条:亢银虎 下一条:孙双成

关闭