重庆大学能源与动力工程学院欢迎您!

您当前的位置 : 首页 >> 师资队伍 >> 博士生导师 >> 正文

师资队伍

博士生导师

李友荣

2017-09-30 15:14  点击:[]

姓名 李友荣             性别                        
所在部门 热物理系             职称 教授            
职务             联系电话 02365112284   
邮箱 liyourong@cqu.edu.cn            


国际杂志:
 [1] C. M. Wu, Y. R. Li, R. J. Liao, Instability of three-dimensional flow due to rotation and surface-tension driven effects in a Czochralski configuration, International Journal of Heat and Mass Transfer, DOI: 10.1016/j.ijheatmasstransfer.2014.09.002, 2014
 [2] C. M. Wu, D. F. Ruan, Y. R. Li, R. J. Liao, Flow pattern transition driven by the combined Marangoni effect and rotation of crucible and crystal in Czochralski configuration, International Journal of Thermal Science, 86: 394-406, 2014
 [3] Y. R. Li, X. Q. Wang, X. P. Li, J. N. Wang, Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants, Energy, 73: 543-553, 2014
 [4] Y. P. Hu, Y. R. Li, C. M. Wu, Comparison investigation on natural convection of cold water near its density maximum in annular enclosures with complex configurations, International Journal of Heat and Mass Transfer, 72: 572-584, 2014
 [5] Y. R. Li, M. T. Du, C. M. Wu, Shuang-Ying Wu, Chao Liu, Jin-Liang Xu, Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis, Energy, 68: 238-247, 2014
 [6] Y. R. Li, J. N. Wang, M. T. Du, S. Y. Wu, C. Liu, J. L. Xu, Effect of pinch point temperature difference on cost-effective performance of organic Rankine cycle, Int. J. Energy Res. 2013; 37:1952-1962
 [7] C. M. Wu, Y. R. Li, D. F. Ruan, Aspect ratio and radius ratio dependence of flow pattern driven by differential rotation of a cylindrical pool and a disk on the free surface, Physics of Fluids, 25: 084101, 2013
 [8] Y. R. Li, Y. L. Zhou, J. W. Tang, Z. X. Gong, Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool, Microgravity Sci. Technol., 25: 225-230, 2013
 [9] Y. R. Li, Book Review: Marcello Lappa: Rotating thermal flows in natural and industrial processes, Cryst. Res. Technol. 48, No. 8, 582-583 (2013)
 [10] C. M. Wu, Y. R. Li, Flow instability driven by the combined temperature gradient and counter rotation of crucible and crystal in a liquid-encapsulated Czochralski configuration, International Journal of Heat and Mass Transfer, 64: 808-816, 2013
 [11] Y. R. Li, Y. P. Hu, X. F. Yuan, Three-dimensional structure of natural convection of water with density maximum in horizontal annulus, International Journal of Thermal Science, 71: 274-282, 2013
 [12] Y. P. Hu, Y. R. Li, X. F. Yuan, C. M. Wu, Natural convection of cold water near its density maximum in an elliptical enclosure containing a coaxial cylinder, Int. J. Heat Mass Transfer, 60: 170-179, 2013
 [13] Y. R. Li, X. F. Yuan, J. W. Tang, Y. P. Hu, Experimental research on natural convective heat transfer of water near its density maximum in a horizontal annulus, Experimental Thermal and Fluid Science, 44:544-549, 2013
 [14] Y. R. Li, Y. Q. Ouyang, Y. P. Hu, Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum in a vertical cylindrical container, Physical Review E 86, 046323, 2012
 [15] Y. R. Li, Z. X. Gong, C. M. Wu, S. Y. Wu, Steady thermal-solutal capillary convection in a shallow annularpool with the radial temperature and concentration gradients, SCIENCE CHINA Technological Sciences, 55(8): 2176-2183, 2012
 [16] Y. R. Li, M. T. Du, J. N. Wang, Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in organic Rankine cycle, Journal of Non-Equilibrium Thermodynamics, 37(4): 413-431, 2012
 [17] Y. R. Li, J. N. Wang, M. T. Du. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle, Energy 42: 503-509, 2012
 [18] Y. R. Li, H. R. Zhang, C. M. Wu, J. L. Xu. Effect of vertical heat transfer on thermocapillary convection in an open shallow rectangular cavity. Heat Mass Transfer 48: 241-251, 2012
 [19] Y. R. Li, M. T. Du, S. Y. Wu, L. Peng, C. Liu, Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle, Energy 40: 341-347, 2012
 [20] Y. R. Li, Y. Q. Ouyang, L. Peng, S. Y. Wu, Direct numerical simulation of Rayleigh-Bénard convection in a cylindrical container of aspect ratio 1 for moderate Prandtl number fluid, Phys. Fluids 24, 074103, 2012
 [21] Y. R. Li, Y. P. Hu, X. F. Yuan, Natural convection of water near its density maximum around a cylinder inside an elliptical enclosure along slender orientation, Numerical Heat Transfer, Part A, 62: 780-797, 2012
 [22] X. F. Yuan, Y. R. Li, Natural convective heat transfer of water near its density maximum in horizontal eccentric annulus, Int. J. Thermal Science, 60(10): 85-93, 2012
 [23] Y. R. Li, S. C. Wang, C. M. Wu. Steady thermocapillary-buoyant convection in a shallow annular pool Part 2: Two immiscible fluids. Acta Mechanica Sinica 27(5): 636-648, 2011
 [24] Y. R. Li, S. C. Wang, C. M. Wu. Steady thermocapillary-buoyant convection in a shallow annular pool Part 1: Single layer fluid. Acta Mechanica Sinica 27(3): 360-370, 2011
 [25] D. F. Ruan, X. F. Yuan, Y. R. Li, S. Y. Wu. Entropy generation analysis of parallel and counter-flow three-fluid heat exchanger with three thermal communications. J. Non-Equilibrium Thermodynamics 36(2): 141-154, 2011
 [26] Y. R. Li, X. F. Yuan, C. M. Wu, Y. P. Hu, Natural convection of water near its density maximum between horizontal cylinders, Int. J. Heat Mass Transfer 54: 2550-2559, 2011
 [27] Y. R. Li, W. J. Zhang, W. Y. Shi, S. Y. Wu. Thermocapillary-Buoyancy Convection in Annular Two-layer System with Radial Temperature Gradient. Microgravity Science and Technology 23: S9-S14, 2011
 [28] B. Lan, Y. R. Li, D. F. Ruan, Numerical Simulation of Thermocapillary Flow Induced by Non-Uniform Evaporation on the Meniscus in Capillary Tubes, Microgravity Science and Technology 23: S35-42, 2011
 [29] D. M. Mo, Y. R. Li, W. Y. Shi, Linear-stability Analysis of Thermocapillary Flow in an Annular Two-layer System with Upper Rigid Wall, Microgravity Science and Technology, 23: S43-48, 2011
 [30] C. M. Wu, Y. R. Li, Instability of forced flow in a rotating cylindrical pool with a differentially rotating disk on the free surface. Sci. China Tech. Sci., 53(9): 2477-2488, 2010
 [31] Y. R. Li, H. R. Zhang, W. Y. Shi, L. Peng. Numerical simulation of thermocapillary convection in a shallow rectangular cavity under the action of combining horizontal temperature gradient with vertical heat flux. Microgravity Sci. Tech., 22: 361-367, 2010
 [32] Y. R. Li, S. C. Wang, S. Y. Wu, W. Y. Shi. Asymptotic solution of thermocapillary convection in two immiscible liquid layers in a shallow annular cavity. Sci. China Tech. Sci., 53(6): 1655-1665, 2010
 [33] Y. R. Li, W. J. Zhang, L. Peng, Thermal Convection in an Annular Two-layer System under Combined Action of Buoyancy and Thermocapillary Forces. J. Supercond. Nov. Magn., 23: 1219-1223, 2010
 [34] X. F. Yuan, Y. R. Li, L. Peng, Y. Liu. Numerical Study on Natural Convection of Water near Its Density Maximum in Horizontal Annulus. J. Supercond. Nov. Magn., 23: 1105-1109, 2010
 [35] D. F. Ruan, X. F. Yuan, S. Y. Wu, Y. R. Li. Exergy Effectiveness Analysis of Three-Fluid Heat Exchanger. J. Supercond. Nov. Magn., 23: 1127-1131, 2010
 [36] Y. R. Li, S. C. Wang, S. Y. Wu, L. Peng. Asymptotic solution of thermocapillary convection in a differentially heated thin annular two-layer pool. Microgravity Sci. Technol., 22(2): 193-203, 2010
 [37] Y. R. Li, S. C. Wang, S. Y. Wu, L. Peng, Asymptotic solution of thermocapillary convection in thin annular two-layer system with upper free surface. Int. J. Heat Mass Transfer, 52: 4769-4777, 2009
 [38] Y. R. Li, C. M. Wu, S. Y. Wu, L. Peng, Three-dimensional flow driven by iso- and counter-rotation of a shallow pool and a disk on the free surface. Physics of Fluids, 21: 084102, 2009
 [39] Y. R. Li, Y. S. Liu, W. Y. Shi, L. Peng, Stability of thermocapillary convection in annular pools with low Prandtl number fluid. Microgravity Sci. Techn., 21: S283-S287, 2009
 [40] Y. R. Li, F. Ling, L. Peng, J. W. Tang. Three-dimensional numerical simulation of thermocapillary flow in a shallow cylindrical pool. Heat Mass Transfer, 45: 1335-1340, 2009
 [41] Y. R. Li, X. X. Zhao, S. Y. Wu, L. Peng. Asymptotic solution of thermocapillary convection in a thin annular pool of silicon melt. Physics of Fluids 20, 082107, 2008
 [42] Y. R. Li, W. J. Zhang, S. C. Wang. Two-dimensional numerical simulation of thermocapillary convection in annular two-layer system. Microgravity Sci. Techn., 20(3-4): 313-317, 2008
 [43] Y. R. Li, L. Xiao, S. Y. Wu, N. Imaishi. Effect of pool rotation on flow pattern transition of silicon melt thermocapillary flow in a slowly rotating shallow annular pool. Int. J. Heat Mass Transfer, 51: 1810-1817, 2008
 [44] Y. R. Li, L. Peng, S. Y. Wu, W. Y. Shi. Effect of Crystal Rotation on Thermocapillary Flow in a Shallow Molten Silicon Pool. Microgravity sci. technol. 19(3/4): 163-164, 2007
 [45] Y. R. Li, D. M. Mo, L. Peng, S. Y. Wu. Numerical investigation of silicon melt flow in a shallow annular pool under an axial magnetic field. Int. J. Modern Physics B, 21(18/19): 3486-3488, 2007
 [46] Q. W. Shang, Y. J. Liu, Y. R. Li, Effect of curvature on thermocapillary-buoyancy convection in shallow annular pool, Heat transfer-Asian Research, 36(4): 187-197, 2007
 [47] Y. R. Li, L. Peng, S. Y. Wu, N. Imaishi, Bifurcation of thermocapillary convection in a shallow annular pool of silicon Melt, Acta Mechanica Sinica, 23 (1): 43-48, 2007
 [48] L. Peng, Y. R. Li, W. Y. Shi, N. Imaishi, Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool, Int. J. Heat Mass Transfer, 50:872-880, 2007
 [49] L. Peng, Y. R. Li, Y. J. Liu, N. Imaishi, T. C. Jen, Q. H. Chen, Bifurcation and hysteresis of flow pattern transition in a shallow molten silicon pool with Cz configuration. Numerical Heat Transfer, Part A, 51: 211-223, 2007
 [50] Y. R. Li, L. Peng, W. Y. Shi, N. Imaishi, Convective instability in annular pools. Fluid Dynamics & Materials Processing, 2(3):153-165, 2006
 [51] Y. R. Li, Y. J. Liu, L. Peng, Y. Wang, Three-dimensional oscillatory thermocapillary flow in encapsulated liquid bridge. Physics of Fluids, 18(7), 074108, 2006
 [52] Y. R. Li, C. J. Yu, S. Y. Wu, L. Peng, N. Imaishi,Global simulation of silicon Czochralski furnace against the assumed thermophysical properties, Cryst. Res. Technol. 41(7): 636-644, 2006
 [53] Y. R. Li, X. J. Quan, L. Peng, N. Imaishi, S. Y. Wu, D. L. Zeng, Three-dimensional thermocapillary-buoyancy flow in a shallow molten silicon pool with Cz configuration, Int. J. Heat Mass Transfer, 48(10):1952-1960, 2005
 [54] Y. R. Li, S. Y. Wu, L. Peng, C. H. Feng, Natural Convection During Czochralski Single Crystal Growth of Super-Conducting Materials, Modern Physics Letters B, 18(30), 1533-1536, 2004
 [55] Y. R. Li, L. Peng, S. Y. Wu, N. Imaishi, and D. L. Zeng, Thermocapillary-buoyancy flow of silicon melt in a shallow annular pool, Cryst. Res. Technol. 39(12): 1055-1062, 2004
 [56] Y. R. Li, M. W. Li, N. Imaishi, Y. Akiyama, T. Tsukada, Oxygen-transport phenomena in a small silicon Czochralski furnace, Journal of Crystal Growth 267(3-4): 466-474, 2004
 [57] Y. R. Li, L. Peng, S. Y. Wu, D. L. Zeng, N. Imaishi, Thermocapillary convection in a differentially heated annular pool for moderate Prandtl number fluid, Int. J. Thermal Sciences 43(6): 587-593, 2004
 [58] Y. R. Li, N. Imaishi, L. Peng, S. Y. Wu, T. Hibiya; Thermocapillary flow in a shallow molten silicon pool with Czochralski configuration, J. Crystal Growth, 266(1-3):88-95, 2004
 [59] Y. R. Li, N. Imaishi, Y. Akiyama, L. Peng, S. Y. Wu, T. Tsukada; Effects of temperature coefficient of surface tension on oxygen transport in a small silicon Cz furnace, J. Crystal Growth, 266(1-3): 48-53, 2004
 [60] Y. R. Li, N. Imaishi, T. Azami, T. Hibiya; Three-dimensional oscillatory flow in a thin annular pool of silicon melt, J. Crystal Growth, 260(1-2): 28-42, 2004
 [61] Y. R. Li, L. Peng, Y. Akiyama, N. Imaishi; Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in annular pool, J. Crystal Growth, 259(4): 374-387, 2003
 [62] Y. R. Li, Y. Akiyama, N. Imaishi, T. Tsukada; Global analysis of a small Czochralski furnace with rotating crystal and crucible, J. Crystal Growth, 255(1-2):81-92, 2003
 [63] Y. R. Li, D. F. Ruan, N. Imaishi, S. Y. Wu, L. Peng; Global simulation of a silicon Czochralski furnace in an axial magnetic field, Int. J. Heat Mass Transfer, 46(15): 2887-2898, 2003
 [64] M. W. Li, Y. R. Li, N. Imaishi, T. Tsukada; Global simulation of silicon Czochralski furnace, J. Crystal Growth, 234(1): 32-46, 2002

国内杂志:
 [1] 陈捷超,李友荣,于佳佳,毛细力比对环形液池内耦合热-溶质毛细对流的影响,工程热物理学报,2014
 [2] 于佳佳,李友荣,陈捷超,Soret效应对环形浅池内溶液热毛细对流的影响,工程热物理学报,35(6), 2014
 [3] 吴春梅,李友荣,C. A. Ward,玻璃基底上平衡态液滴接触角特性,工程热物理学报,35(2): 362-365, 2014
 [4] 龚振兴,李友荣,彭岚,吴双应,石万元,旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解,物理学报, 62(4): 040201, 2013
 [5] 吴春梅,李友荣,C. A. Ward,玻璃基底上水滴稳态蒸发过程中的能量传输机制,工程热物理学报,34(7): 1311-1314, 2013
 [6] 吴春梅,李友荣,彭岚,吴双应,深径比对Cz结构内旋转驱动流动的影响,工程热物理学报33(1): 97-100, 2012
 [7] 李友荣,莫东鸣,彭岚,石万元,重力水平对环形液池内热毛细-浮力对流耗散结构的影响,工程热物理学报32(8): 1269-1272,2011
 [8] 袁晓凤,李友荣,胡宇鹏,偏心水平环形腔内冷水稳态自然对流的数值模拟,工程热物理学报32(7): 1191-1194,2011
 [9] 李友荣, 王双成, 石万元, 吴双应. 环形腔内双层薄液层热毛细对流的渐近解. 力学学报, 42(2): 306-311, 2010
 [10] 吴春梅,李友荣,彭岚,吴双应. 丘克拉斯基结构液池内旋转驱动流动及转变. 工程热物理学报,31(7): 1181-1184,2010
 [11] 李友荣,欧阳玉清,王双成,吴双应. 环形浅液池内浮力-热毛细对流的渐近解. 工程热物理学报,31(11): 1921-1924,2010
 [12] 张鸿儒,李友荣,彭岚,吴双应,存在垂直加热时的矩形池内热毛细对流的数值模拟,华北电力大学学报,37(3): 64-68, 2010
 [13] 李友荣,刘玉姗,石万元,环形液池内低Pr数流体热毛细对流的线性稳定性分析,重庆大学学报,32(12): 1403-1407, 2009
 [14] 李友荣,魏东海,吴双应,彭岚,勾形磁场对硅单晶CZ生长过程影响的全局数值模拟分析,工程热物理学报,29(6): 1021-1024, 2008
 [15] 李友荣,张文杰,王双成,环形双层液体内热毛细对流过程的数值模拟,工程热物理学报,29(10): 1759-1761, 2008
 [16] 赵新兴,李友荣,彭岚,吴双应,曾丹苓,环形浅液池内热毛细对流的渐近解,工程热物理学报,28(4): 676-678, 2007
 [17] 李友荣,彭岚,吴双应,曾丹苓,Cz结构浅池内硅熔体热对流的分岔特性,工程热物理学报,28(6):922-924, 2007
 [18] 李友荣,凌芳,彭岚,吴双应,开口圆形浅池内低Pr流体的热毛细对流,热科学与技术,6(1): 45-50,2007
 [19] 李友荣,魏东海,余长军,彭岚,吴双应,物性参数对硅单晶Czochralski生长过程的影响,热科学与技术,l5(4): 351-355,2006
 [20] 李友荣,刘英杰,彭岚,吴双应,液封液桥内振荡热毛细对流的三维数值模拟,工程热物理学报,27(S2): 5-8, 2006
 [21] 李友荣,唐经文,黄旭方,曾丹苓,环形浅液池内热毛细对流的热力学特性,工程热物理学报,27(2): 193-195, 2006
 [22] 商其伟,刘英杰,李友荣,曲率对环形浅液池内热毛细-浮力对流的影响,热科学与技术,5(1): 22-26, 2006
 [23] 李友荣,邓努波,吴双应,彭岚,李明伟,表面张力温度系数对硅单晶Czochralski法生长过程的影响,材料研究学报,19(4):395-400, 2005
 [24] 李友荣,余长军,吴双应,彭岚,轴向磁场对硅单晶Czochralski生长过程的影响,材料研究学报,19(3):249-254, 2005
 [25] 李友荣,彭岚,吴双应,曾丹苓,今石宣之,硅熔体Cz结构浅池内热毛细对流转变滞后特性,工程热物理学报,26(S): 155-158, 2005
 [26] 阮登芳,李友荣,彭岚,吴双应,李明伟,晶体旋转对浅层内热毛细对流的影响,自然科学进展,15(2):248-251, 2005
 [27] 彭岚,李友荣,曾丹苓,环形液池内中等Pr数流体的浮力—热毛细对流,力学学报,37(3): 266-271,2005
 [28] 彭岚,封翠华,李友荣,吴双应,超导材料Y123生长时的流动、传热与传质特性,重庆大学学报,28(5):32-34, 2005
 [29] 唐经文,彭岚,李友荣,曾丹苓,复相系非平衡定态的稳定性,重庆大学学报,28(12):36-38, 2005
 [30] 李友荣,彭岚,吴双应,李明伟,曾丹苓,环形浅液池内中等Pr数流体的热毛细对流,工程热物理学报,25(3): 484-486, 2004
 [31] 李友荣,阮登芳,彭岚,吴双应,硅单晶Czochralski法生长全局数值模拟 II.质量传递特性,材料研究学报,18(2):219-224,2004
 [32] 李友荣,阮登芳,彭岚,吴双应,硅单晶Czochralski法生长全局数值模拟 I.传热与流动特性,材料研究学报,18(2):212-218,2004
 


        

上一条:张彪 下一条:吴春梅

关闭